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ABSTRACT

A video echo cancellation scheme that uses system identification tech-
niques is presented, where the associated transversal filter has fewer mul-
tipliers than taps. This topology is made possible by exploiting the proper-
ties of the echo channel impulse response. First, optima are obtained by
performing muttiple system identifications with the available multipliers in
various configurations along the transversal delay line. Then, a novel
linear mapping is applied to reconstruct the real optimum of the filter, and
the multipliers are redistributed where needed. The mapping reduces the
redistribution problem to a simple geometric interpretation and permits a
non-white reference to be used in system identification.

IN D ION

In video transmission, multipath reception, caused by signal reflections
off buildings or other terrestrial objects, causes distinct time shifted, some-
times smeared replicas or ghosts of the image to appear. Additionally,
ghosting can be found in cable systems having poorly terminated connec-
tions. Since the late 1970s, researchers have been devising methods to
cancel video ghosts [1]. This problem has proven to be a challenge both
from the point of view of cancellation effectiveness as well as implementa-
tion efficiency.

In examining the impulse response of the ghost channel, we find that it
is sparse because many (about 60%) of the response values over time are
zero. If an inverse filter of the channel was constructed to cancel the echo
function, it too can be made sparse, not requiring a multiplier at every 1ap
in its transversal delay line.

We will present an approach to reduced-muttiplier adaptive filters that
differs from previously reported work [2]. If a transversal filter with a multi-
plier at each tap is set up to system-identify an echo channel, the tap
weight pattern will mimick the channel impulse response in a least squares
sense even if the order of the actual impulse response is higher than the fil-
ter. The optimal tap weight pattern for this filled-multiplier filter we will call
the global optimum. Suppose that the multipliers at some taps are
climinated. If the resulting reduced multiplier-filter system-identifies the
echo channel, the weights will assume a new optimum pattern. The new
pattern can be related to the global optimum by a non-invertible linear map-
ping. However, if we combine a sufficient number of optima from different
multiplier configurations into a single pseudo-optimum, an invertible map-
ping can be built between the pseudo-optimum and the global optimum.
Consequently, with this mapping we can find our way to the global op-
timum with a reduced set of multipliers, and then redistribute the multipliers
only where needed. In the redistribution, the multipliers will form local
groups or clusters along the delay taps, hence, the redistribution will be
called clustering.

We will first present the preliminaries to more specifically state the
cluster problem. Next, we will discuss more formally the cluster formula-
tion; this mainly involves a geometric description of the invertible optimum
mapping, Ac. This mapping permits a non-white reference to be used in
system identification. Special cases of Ac are included to help gain insight.

Finally, some clustering algorithms based on Ac are summarized; simula-
tion examples are also presented.

PRELIMINARIES

In a FIR adaptive filter the weights and signal are represented by RM
vectors WT={wo...wM-1} and X" = {x(n)...x{n-M+1)}, respectively. where M is
the number of taps. The filter output may be then written by y(n) = XTW =
WTX. When the filter weights are adjusted so that y(n) best approximates
desired signal d(n) in the least squares sense, Weiner solution W results.

W' =L E [XXTTT Eld(n)X] (1)

E[XXT] = R and is known as the input auto correlation matrix.

The LMS gradient [3],

V() = - 2&(MX(n)

may also be used, where g(n) = d(n) - XTW. Weights are iterated to reach
W by following the gradient as shown below.

W(n+1) = W(n) - uv(n)

= W(n) + 2ne(n)X(n) (2)

The constant p determines the rate of descent.

Considering adaptation, our problem is to distribute the multipiiers only
1o the tap locations where they are needed and then adjust them to the cor-
rect value. This new filter structure is equivalent to a normal M tap FIR fil-
ter having M-N of the multipliers set to zero; this kind of tap weight pattern
would be expected when identifying a non-smeared or smeared echo se-
quence that could be approximated by N active components. Suppose that
the N multipliers are distributed in a known pattern that is different from the
correct pattern of active taps required to replicate the echo. We can find
out how the optimum associated with this known tap weight pattern is re-
lated to that of the global optimum of the filter having muttipliers at all M
taps. In fact, if we only know the optima of a sufficient number of different
patterns containing N multipliers, we can combine this information to
reconstruct what would be the global M tap optimum. The zero and non-
zero taps can then be identified, leading to the correct multiplier distribu-
tion.

CLUSTER FORMULATION

To start, suppose that the FIR filter has M taps and N multipliers where
N<M. The global optimum, W = {Wo .. W M.1}T, resides in RM tap weight
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space. Also W & EN° where EN° « RM is the subspace spanned by the
non-zero weights. EN° is defined when the multipliers are distributed to the
correct tap pattern needed to identify the echo. For an arbitrary tap pattern
spanned by EN there is optimum Ws e EN. witheEN < RMand i = 1,..,T,
we pul’i‘ eN - oand j EN = RM. We can now create an observed op-
timum Wc' by direct sum as shown below.

N T
We= & Wsi (3)
Since W is in RM, we can find a invertible mapping AW > W

Wo=Ac W' ()

where Ac is an MXM matrix.

Before presenting the Ac equations, we illustrate our description with a 2
tap example having a single multiplier as displayed in Figure 1 (In this case
M=2 and N=1). The single multiplier is first connected to the left delay tap
(Fig. 1a) and is optimized to setting w1’. When connected to the right delay
tap (Fig. 1b), the optimum is found to be w2'. After combining these coor-
dinates to form Wc' (Fig. 1c) it is seen that this is a point different from
global optima, W', but can be related to We through Ac.

Using the concepts behind (3) and (4) and a derivation too lengthy to be
presented here, the general M tap case is given by

* * _1

] -1
ZisiRsiZ1' z] JrRW ©

=AW,

where we define the switching matrix S = diag{sk}, sk = 1,0. sk = 1 cor-
responds to taps having multipliers, where sk = 0 is the converse.

M
[Note: X
K=1

sk= N]

Additionally, permutation matrix, Z, is defined as shown:

K M K
Tifi=sk [Z si]+(1-sK) [T si + Z(1-5i)]
i=1 i=1 i=1
Z= [ziK]= (6)
O otherwise

K=1,M

Note that for a given S matrix denoted by S; in (5), there is a cor-
responding Z matrix Zi. In the term [ZiSiRSiZTi] we have created a kind of
subspace auto correlation matrix. Pre-multiplying R by ZiSi nulls rows cor-
responding to muttiplierless taps and moves the remaining active rows to
the top of the matrix; post-multiplying R by $iZ"i nulls and moves remaining
columns to the left. The resultant matrix is an NxN sub-matrix nested in a
MxM matrix of ‘0’ elements. The operator -19 inverts the NxN nested sub-
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matrix and places the results back in the same position the original sub-
matrix occupied within the full MxM matrix. Additionally, to meet the condi-
tions fulfilling (2) and (3), the switching pattern defined by {S1, .. ,S1] must
follow the constraint

Z Si=I.
i=1

Now that mapping Ac has been described, it is easy to see how a cluster
can be formed. Referring to the 2 tap example of Figure 2, we see that We
is constructed in the same manner as in Figure 1. Both components of We
are non-zero. If we were to use (5) and then find A¢, the global optimum,
W', can be calculated. Notice that W' has a single non-zero component,
hence, only one multiplier is needed in this simple cancellation fitter. Thus,
clustering in the 2 tap filter is achieved when the single multiplier is as-
signed to the first tap. In larger filters having M taps and N multipliers, the
simple case described can be generalized, as will be shown in the
'Algorithms and Examples’ section.

Special cases of Ac:

1. Suppose R = {rj} = diag {A }= {A} (pseudo random noise is an ap-
proximation).

Following the same construction as (5),

T . T

We= % Wsi=[ £ Si W =W )
i=1 i=1

If R = A, then any switching pattern corresponding to conditions forming (5)
(i.e., non-ambiguously spanning full tap space HM) yield a We matching
W, no mapping necessary.

2. This case is trivial but should be mentioned. Suppose the set {Si} con-
sists of a single | matrix. Substituting this in (5) with some calculation
yields

We = IW (8)

3. This case is the opposite of case 2). Instead of having |, corresponding
to one multiplier per tap, suppose there is only a single multiplier available
for Mtaps. To model this, let {S1 = diag{1,0,0,..,0}, s2 = diag{0,1,0,..,0}, ..,
Sm = diag{0,0,..,0,1}}. Naturally

After some manipulation using (5), we get

* 1

We =— RW* ©)
Fii

where rjj is a main diagonal element of R.

Note: Switching patterns will vary between cases 1) and 2). Likewise it is

likely that corresponding Ac matrices will have properties varying between

those of | and 1/ri R. More on this will be discussed.
Algorithms and Examples

Combing:

A switching pattern that meets the conditions needed to obtain a valid We

usable in (5) is the comb. The algorithms to be discussed all use this pat-



tern. We will describe a 3 to 1 comb, but this approach is not restricted to
a3 to 1 ratio. Assuming that the transversal filter has M taps, let us say
that we find (for example) the worst case echo requires that only N multi-
pliers are needed in this structure at any given time. Let M = 3N. To form
the comb, distribute the N weights evenly over the 3N taps, leaving a gap
of 2 taps between multtipliers. The Comb can be advanced. More specifi-
cally:
e Distribute N weights eveTnIy over the FIRST of every Third

:331 taps; LMS Converge' and Store Weight Values forming
s1.

+ Distribute N weights evenly oyer the SECOND of every
Third 3N taps; LMS Converge' and Store Weight Values
forming Ws2 -

« Distribute N weights evenly over the THIRD of every Third
3{/\' 3t.a_slps; LMS Converge' and Store Weight Values forming
S

+ Combine Stored Weight Values forming We .
In the sequence described, the comb advances position only after each Wi
has converged to its final value. A useful variation would be to advance
the comb after each LMS cycle of (2) thus updating Wc' every 3 cycles. In-
termediate values of Wc' provided with this "Cyclic Comb" may be
desirable in giving continuous subjective improvements to the picture as
final convergence is reached.

1. Clustering with R = A
a) Find We either by Advancing or Cyclic comb.

b) Select N non-zero!T values of weights; assign the N muttipliers to
related locations and set to corresponding weight values.

2. Clustering with R # A

This algorithm uses steps a) and b) from above. However, this inter-
mediate step must be added between a) and b).

) Calculate W = Ac 'We. W' is used in step b).
Since Ac! is a function of R and {S1,..,ST}, it may be pre-calculated and
stored. It is best to find a reference signal and switching pattern (i.e. per-
haps a different comb ratio) to lead to a very simple well behaved A’
structure, as this will facilitate multiplication later.

3. Coarse-Fine Clustering Projecting Forward through Ac
a) Find Wo either by Advancing or Cyclic Comb.

b) Select N maximum magnitude elements of We;
assign the N multipliers to related locations and set to correspond-
ing Weight Values (considered as initial condition).

c¢) With the Weights set as in b}, perform final LMS N
convergence. This fine tunes the weights to match W | thus com-
pensating for sidelobe distortion (as mentioned below).

This approach is very useful for an Ac matrix having a dominant main
diagonal and off diagonal elements that produce negligible sidelobes when
a single basis element of W* is mapped to Wc. This method is also com-
putationally simpler than algorithm 2) for non-sparse A and can work
where Ac™ is too ill behaved for 2).

In our test, a sin t/t reference signal was chosen for its smooth spectral
characteristics (any frequency null would make tuning at that point indeter-
minate). To match video bandwidth, the sin t/t roll-off was set at 5 MHz.
Sampling was done at 3x bandwidth with a 3 to 1 comb switching pattern.
Ac was calculated using (5) and found to be practically indistinguishable
from (1/mi)R, (9) [case 3]. To show the utility of the mapping, a single echo
that can be described as having W= {0,0,..,1,..,0,0} was processed with a
3 to 1 Advancing Comb (with LMS as described in this section under

1 This convergence is an example of constrained adaptation [4].
+1 Some components of Wc* would only be zero under ideal conditions with perfect conver-
gence. The correct objective could be achieved by selecting the N maximum magnitude

weight values.

’Combing’) to obtain We. W was also mapped through Ac to find Wc' ac-
cording to (5). Figure 3 shows the results of the Advancing Comb while
Figure 4 that of the mapping.

In Figure 5, a video image is put through a multiple smeared ghosting
function and de-ghosted with algorithm 3).

CONCILUSIONS

We have presented an approach to echo cancellation using an adap-
tive transversal fitter having less multipliers than taps. The basis for the
approach is a new invertible mapping, Ac, relating optima from different
multiplier configurations to the global optimum of a full multiplier filter. Fu-
ture work on matching the best Ac matricies to the right algorithms, as well
as finding new usable mappings can prove fruitiul. Additionally, the effec-
tiveness of the approach should be studied with a large variety of echo
channels.
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Figure 1c. 2 to 1 Cluster Mapping: W3

Figure 2. A Cluster Case.

Figure 1b. 2 to 1 Cluster Mapping: w2’
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Figure 5. Video Deghosting Example.
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