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Abstract—The real pole component (envelope decay co-
efficient) of an oscillating microelectromechanical systems
(MEMS) structure is calculated directly in the energy do-
main without using an equation of motion. Similar to the
simplified Rayleigh frequency calculation in which maxi-
mum potential and kinetic energy are equated, our method
equates the initial minus dissipated energy to present en-
ergy.

I. Introduction

When designing MEMS integrated circuits (ICs), it is
desirable to find transfer functions to model the mo-

tional structures such that they are easily combined with
models of the electronic activation and sensing circuits.
For motional structures, a popular way of approximating
the resonance frequency is the simplified Rayleigh method
[1]. With this approach, it is unnecessary to construct a
differential equation of motion; rather the simpler idea of
calculating potential and kinetic energy of the structure
under the constraint of energy conservation is used. Al-
though the Rayleigh method provides the imaginary com-
ponents of the poles of the motional structure, it is desir-
able to find a comparably simple energy balancing method
as a counterpart to approximate the real component of
the poles that characterize the damped envelope decay of
free oscillation. Presently, the real component is typically
found by indirectly forming an equation of motion by us-
ing the more complex Rayleigh dissipation function in the
Lagrange equation [2], or by fitting an energy equivalent
viscous damping coefficient into an equation of motion [1],
or by invoking the energy relation of the definition of Q
[3]. However, we show that the original basic energy bal-
ancing idea of the simplified Rayleigh resonant frequency
calculation can be extended by developing an alternative
approximation of envelope decay. The derivation for our
method is performed on a flexible cantilever or beam with
arbitrary anchors as defined by a deflection equation using,
e.g., polynomial coefficients. As will be apparent after the
derivation, the method can be adapted easily to analyze
other structures.

II. Background

We start with a brief overview of the simplified Rayleigh
frequency method as applied to a flexible cantilever or
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beam with arbitrary anchors. Assume that the dynamic
structure deformity ỹ is identical to the static deformation
y, which is normalized to the maximum deflection A:

ỹ = yA sin(ωt)
where y ≡ y(x).

(1)

When the total system energy is kinetic and none is
stored potentially we have:

KEMAX =

L∫
0

m

2

(
∂ỹ

∂t

)2

dx
∣∣
MAXIMUM VELOCITY,

(2)

which occurs when the structure crosses the zero deflection
point, where m is mass per unit length and L is the length
of the structure. When all the energy is stored with the
accompanying pause in motion, we have for the potential
energy:

PEMAX =

L∫
0

EI

2

(
∂2ỹ

∂x2

)2

dx
∣∣
MAXIMUM DEFLECTION,

(3)

where E is Young’s modulus and I is the relevant moment
of inertia.

Because the energy of a nondamped system is con-
served, we can equate (2) and (3), which after some calcu-
lation yields:

ω0 =

√√√√√√√√
EI

L∫
0

(
∂2y

∂x2

)2

dx

m
L∫
0

y2dx

(4)

for resonant frequency.

III. Energy Balance Envelope Decay Method

Assume now that the system described above is mildly
damped such that the resonant frequency is negligibly af-
fected. Eq. (1) will need to be modified so that envelope
amplitude A is now time varying yielding,

ỹ = yA(t) sin(ωt). (5)

The total system energy also is no longer constant, but
can be written as:

ET (t) = Ei −
∫∫
x y

kd
∂ỹ

∂t
• dydx = Ei − kd

t∫∫
x 0

(
∂ỹ

∂τ

)2

dτdx,
(6)

where Ei is the initial energy in the system and the inte-
gral terms represent the energy dissipated by the system
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through viscous damping along the length of the struc-
ture. kd is the damping coefficient per unit length and
can include effects such as squeeze film [4], [5] or Stokes-
type fluid shear damping [3]. The total system energy also
can be written at the time points of maximum deflection,
which will correspond naturally to points along the enve-
lope A(t). Replacing ỹ by using (5) instead of (1) in (3),
and simplifying yields:

ET (t)
∣∣∣∣
t=Integer Cycle Interval

=
1
2
EI(A(t))2

L∫
0

(
d2y

dx2

)2

dx.
(7)

If we note that the integral in (7) is constant, ET ≡
ET (A(t)) at the integer cycle sample points of maximum
deflection. Notice, however, that between the maximum
deflection time points that exactly define A(t), (7) is mono-
tonic. Thus, the constraint that (7) is sampled can be re-
moved and ET ≡ ET (A(t)) approximates the envelope at
all times.

Returning to (6), we substitute from (5) and simplify
to yield:

ET (t) = Ei − kd

L∫
0

y2dx

[ t∫
0

(A(τ))2ω2 cos2(ωτ)dτ

+

t∫
0

(
dA(τ)

dτ

)2

sin2(ωτ)dτ

]
.

(8)

For a mildly damped system, A(τ) varies slowly with
respect to the squared trigonometric functions. So, to re-
fine (8), the mean squared values for these functions can
be substituted to obtain (see Appendix for more formal
treatment) the quasistatic envelope approximation:

ET (t) ≈ Ei − kd

2

L∫
0

y2dx

t∫
0

(
ω2(A(τ))2 +

(
dA(τ)

dτ

)2
)

dτ.
(9)

Put EI
L∫
0

(
d2y
dx2

)2
dx → Ke in (7) and kd

L∫
0

y2dx → Kd in

(9). Then equating a nonsampled version of (7) with (9)
and differentiating, we may write:

dA(t)
dt

= −Kdω
2

2Ke
A(t) − Kd

2Ke

1
A(t)

(
dA(t)

dt

)2

.
(10)

This equation may be solved by recognizing the derivative
as the quadratic variable to yield:

dA(t)
dt

=

[
−Ke

Kd
±

√
K2

e

K2
d

− ω2

]
A(t). (11)

Therefore, the solution is simply:

A(t) = Ceσt,

where σ = −Ke

Kd
+

√
K2

e

K2
d

− ω2
0,

(12)

and the positive square root is retained since σ must ap-
proach zero when Kd, the variable containing damping co-
efficient kd, also approaches zero. To be consistent with
(4), ω0 replaces ω, indicating we are interested in reso-
nance when finding the poles of the structure’s transfer
function p1,2 = σ ± jω0. By inspecting (4), (12) also can
be written as:

σ = − m

kd
ω2

0 +

√(
m

kd

)2

ω4
0 − ω2

0. (13)

We now show how our method can be adapted to other
structures. Reviewing (7) and (9), notice that Ke and
Kd as defined capture the relevant functions of normal-
ized static deflection of the linear structure. The remain-
ing parts of (7) and (9) perform functions of time varying
scaling of Ke and Kd. For an arbitrary structure to be
used in our formulation, all components of the structure
would have functions subjected to the same scaling. Know-
ing energy is additive, we can revise Ke and Kd to capture
normalized static deflection functions of a structure con-
sisting of a group of both flexible beams and rigid bodies,
and apply the new coefficients in (12) to find σ:

Ke =
n∑

i=1

EI

Li∫
0

(
d2yi

dx2

)2

dx, (14)

Kd =
n∑

i=1

kd

Li∫
0

y2
i dx +

m∑
i=1

ci ŷ2
i , (15)

As in the derivation of the single beam or cantilever,
yi ≡ yi(x), but ŷi is not a function because it repre-
sents the displacement of a rigid body within the compos-
ite structure. Note that all yi and ŷi need to be normal-
ized to the maximum deflection of the composite structure
as bounded by A(t). The set of ci are lumped parameter
damping coefficients for the rigid bodies. Naturally, rigid
bodies need not be accounted for within Ke because they
do not store potential energy. When it is desirable to in-
corporate flexible beams with nonuniform properties along
the length (i.e., varying thickness), constants E, I, and kd

can be transformed to functions of x and placed in the
integrals of (14) and (15).

IV. Results

Our energy balancing method, along with the energy
equivalent viscous damping coefficient method (EEVD)
[1], are used to calculate σ. This is done as a validity check
as well as to form a comparison. A 2 µm × 2 µm × 800 µm
polysilicon beam situated between two rigid beams, each
having a 1-µm gap, are used in the calculations. The rigid
beams might serve as capacitor plates that sense the cen-
ter beam’s position [if an alternating current (AC) were
forced through the center beam, for example, a B-field
could be measured [6]]. The normalized static deflection
is y = 16x2/L2 − 32x3/L3 + 16x4/L4 (assumed to be the
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Fig. 1. Percentage offset of our energy balance σ relative to the EEVD
σ versus the standard damping ratio. The physical beam parameters
are implicit variables.

same shape as in oscillation). Also, EI = .2133N µm2,
m = 9.2 pg/µm, and kd = 592e − 18N s/µm2, as
caused by squeeze film damping with the rigid beams.
Using Rayleigh’s method, ω0 = 169 krad/s. With our
energy balance approximation, σ = −33432 s−1, and
with EEVD, σ = −32174 s−1. We note that EEVD,
which maps the continuous physical parameters of the
beam onto a second order lumped parameter differen-
tial equation, yields: p1,2 = σEEV D ± j

√
ω2

0 − σ2
EEV D =

− (kd/(2m))±j
√

ω2
0 − (kd/(2m))2, where ω0 is the same as

in (4). Conversely, the couplet of Rayleigh’s simplified fre-
quency calculation and our method yields a free standing
±jω0 for the imaginary pole component and the real com-
ponent σ, (13), contains the radical. Thus, the solutions
of the two methods have comparable complexity with a
slight shift in numerical value under mild damping condi-
tions. We can write the damping ratio in terms of σEEV D,
ς = −σEEV D/ω0. By inspection we then can write (13) as
a function of ς, σ = (ω0/2)

(
(−1/ς) +

√
(1/ς2) − 4

)
. We

then plot the percentage offset between the two methods
relative to EEVD versus ς, 100 (σ − σEEV D) /σEEV D, de-
picted in Fig. 1. Note that ω0, though part of both our
method and EEVD calculations, cancels out of the com-
putation of Fig. 1. The mild damping ratio range plotted
easily exceeds what would be considered reasonable for a
structure operating as a resonator, yet the maximum off-
set is bounded by ≈ 5%, thus further demonstrating the
numerical accuracy of our σ approximation method.

V. Conclusions

Not only the imaginary, but, as was demonstrated, the
real pole component of an oscillating MEMS structure can

be calculated directly in the energy domain, thus bypassing
the construction of a differential equation of motion.

Appendix A

We give an overview of the quasistatic envelope approxi-
mation used to arrive at (9). For a function f(t) that varies
slowly with respect to cos(ωt), as in a mildly damped sys-
tem, we can write:

t= 2π
ω n∫

0

f(τ) cos2(ωτ)dτ ≈
n∑

i=0

f

(
2π

ω
i

) 2π
ω∫

0

cos2(ωτ)dτ

=
1
2

n∑
i=0

f

(
2π

ω
i

)
2π

ω

≈ 1
2

t= 2π
ω n∫

0

f(τ)dτ.

The above applies if sin(◦) is substituted for cos(◦).
Also, since f(t) varies slowly, t in the first and last in-
tegrals need not be constrained to t ≡ t(n).
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